
SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

DanceQ: High-performance library for number-conserving bases

Robin Schäfer1⋆, David J. Luitz2†

1 Department of Physics, Boston University, Boston, Massachusetts 02215, USA
2 Institute of Physics, University of Bonn, Nussallee 12, 53115 Bonn, Germany

⋆ rschaefe@bu.edu , † david.luitz@uni-bonn.de

Abstract

The complexity of quantum many-body problems scales exponentially with the size of
the system, rendering any finite-size scaling analysis a formidable challenge. This is par-
ticularly true for methods based on the full representation of the wave function, where
one simply accepts the enormous Hilbert space dimensions and performs linear algebra
operations, e.g., for finding the ground state of the Hamiltonian. If the system satis-
fies an underlying symmetry where an operator with a degenerate spectrum commutes
with the Hamiltonian, it can be block-diagonalized, thus reducing the complexity at the
expense of additional bookkeeping. At the most basic level required for Krylov space
techniques (like the Lanczos algorithm), it is necessary to implement a matrix-vector
product of a block of the Hamiltonian with arbitrary block-wavefunctions, potentially
without holding the Hamiltonian block in memory. An efficient implementation of this
operation requires the calculation of the position of an arbitrary basis vector in the
canonical ordering of the basis of the block. We present here an elegant and power-
ful, multi-dimensional approach to this problem for the U(1) symmetry appearing in
problems with particle number conservation. Our divide-and-conquer algorithm uses
multiple subsystems and hence generalizes previous approaches to make them scalable.
In addition to the theoretical presentation of our algorithm, we provide DanceQ, a flex-
ible and modern – header only – C++20 implementation to manipulate, enumerate, and
map to its index any basis state in a given particle number sector as open source software
under https://DanceQ.gitlab.io/danceq.

1

https://scipost.org/SciPostPhysCodeb.48
mailto:rschaefe@bu.edu
mailto:david.luitz@uni-bonn.de
https://DanceQ.gitlab.io/danceq

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

Contents

1 Introduction 3

2 Overview 5
2.1 The problem 5
2.2 The code 6

3 The algorithm 7
3.1 A concrete example 7
3.2 General recipe 11

3.2.1 The Offset 12
3.2.2 The Stride 13

3.3 Two important limits 14
3.3.1 Two subsystems (N = 2) 14
3.3.2 L subsystems (N = L) 14

3.4 Enumerative encoding 15

4 DanceQ 17
4.1 Core Modules and Usage 17
4.2 Lookup tables 19
4.3 Performance 20
4.4 Matrix-free multiplication 23

5 Conclusion 25

A Hilbert space dimension 26

B Pseudo code 27

C Sparse tensor storage 28

D Example code 30

References 32

2

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

1 Introduction

For quantum many-body problems, the size of the Hilbert space grows exponentially with the
size of the system. Since there are only a handful of exactly solvable and non-trivial interacting
models [1–3], we have to rely on approximations of various degrees of sophistication [4–6] and
numerical methods [7–10] to study interacting systems. Numerical approaches started to pick
up momentum in the 1950s with the increasing availability of computational power motivating
new algorithmic developments of particular relevance for condensed matter physics [11–14]
and the subsequent birth of computational physics [15–19]. In particular, it became possible
to compute the spectrum of small but generic interacting many-body systems [20]. In 1958,
for example, R. Orbach used an IBM 701 to compute eigenvalues of a chain of ten spins [21].
The success of numerical simulations of one-dimensional systems [22–25] quickly swapped
over to higher dimensions [26–28] due to the exponentially growth in computer power [29,
30]. This steady growth of computer power makes it possible today to compute ground states
for magnetic systems containing up to 50 spin-1/2 particles [31–35] with total Hilbert space
dimensions exceeding 1015.

Brute force methods directly tackle the exponentially increasing complexity of the Hilbert
space by encoding all details of the wave function fall under the category of exact diagonal-
ization. Compared to other computational techniques frequently used in the field [8,9], their
advantages are their wide applicability and unbiased nature, particularly for cases where wave
functions are strongly entangled. Naturally, the exponential growth in complexity of the prob-
lem imposed by quantum mechanics is a major obstacle to the solution of larger systems,
which, in turn, are required for a valid finite size scaling analysis to address the thermody-
namic limit. Therefore, any reduction of the problem – such as by exploiting symmetries to
block-diagonalize the Hamiltonian – should be employed. Besides lattice symmetries that de-
pend on the precise geometry of the problem [33–38], more intrinsic properties independent of
the spatial structure play a crucial role in many physical systems. One such property is the con-
servation of the particle number, which leads to the simplest scheme for block-diagonalization,
which is the focus of this work. Number conservation naturally arises in simple tight-binding
type models [39] and in magnetic spin systems where the equivalent symmetry is related to
the total magnetization. While organizing and managing the basis states may seem straight-
forward at first glance, the task becomes increasingly complex as the number of particles and
system size grows, as outlined below [7,40,41].

In this work, we present an efficient algorithm to handle and organize the basis states
of number-conserving systems based on a general divide-and-conquer approach. Specifically,
consider a system consisting of L individual sites, where each site hosts a quantum degree of
freedom (qudit) with a local Hilbert space dimension Q with the basis states

|σi〉 ∈ {|0〉, |1〉, . . . , |Q− 1〉}. (1)

The total particle number of the many-body system is

n=
L
∑

i=1

σi . (2)

In the language of Bosons, σi refers to the number of particles located at a discrete lattice site
where the maximal number of particles per site is Q − 1. Alternatively, we can think of the
total magnetization of L spin-S instances with 2S + 1 = Q. In this scenario, the total particle
number is replaced by the total magnetization along the z-axis:

Sz
tot =

L
∑

i=1

Sz
i . (3)

3

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

Throughout the manuscript, we mainly use the Bosonic language and label the Hilbert
space sectors by the particle number n or filling fraction f := n

L(Q−1) defined with respect
to the maximal particle number L(Q − 1). The filling fraction can be translated to the total
magnetization in the spin language: Sz

tot = SL(2 f − 1). The half-filling case refers to the
zero-magnetization sector.

Our algorithm efficiently manages the comprehensive organization and manipulation of
these basis states, which is a crucial element for methods based on exact diagonalization.

Naively organizing all basis states with a fixed particle number in a list, hash tables [42],
or in lexicographical order [43] quickly suffers from an exponentially increasing overhead. For
example, considering L = 32 spin-1/2 particles at half-filling allocates approximately 18GiB
of additional memory, which may be needed elsewhere. To overcome this barrier and to make
larger systems accessible, Lin [7,40] proposed the decomposition into two subsystems reduc-
ing the memory consumption of lookup tables from O

�

eL
�

to O
�

eL/2
�

(a high-performance
implementation is for example provided in Ref. [44]). However, with the advancement of tech-
nology and massive parallelization over the past decades, even larger systems have become
accessible, necessitating an even greater compression of lookup tables in massively parallel
codes. Inspired by Lin’s approach, we have generalized this idea into a “divide-and-conquer”
ansatz, allowing the decomposition into N subsystems yielding a reduction of O

�

eL/N
�

.
The newly achieved reduction is extremely important for large, dilute systems and for mas-

sively parallel sparse and matrix-free applications. In the former case, the critical bottleneck in
state enumeration can be circumvented, while in the latter case, the reduced required storage
for index lookup makes it possible for each worker, dealing with a part of the Hilbert space,
to hold thread-local lookup tables for fast and synchronization-free state-to-index mapping
(details below).

We have integrated our multi-dimensional search algorithm into a modern C++20 imple-
mentation — DanceQ [45, 46] available as open source software under https://gitlab.com/
DanceQ/danceq — capable of generating arbitrary particle number preserving Hamiltonians
for arbitrary Q.

It features both Message Passing Interface (MPI) and openMP implementations. Our imple-
mentation features a MPI-based, matrix-free version of the Lanczos algorithm for ground-state
searches [11], along with a frontend for advanced parallel libraries such as Petsc [47,48] and
Slepc [49, 50]. It provides a user-friendly interface that is ready to exploit the full potential
of current high-performance computing facilities.

While our motivation is driven by the application to physical systems, the problem of effi-
ciently computing a lexicographic one-to-one mapping is a well-known problem in computer
science and combinatorics and referred to as enumerative encoding [51, 52]. Our generic al-
gorithm and previous variants [7,40,53], can be derived from the general ansatz provided by
Cover in 1973 [52], a link we establish in Sec. 3.4.

This paper is organized as follows: In Sec. 2, we introduce the problem and the desired
features needed to efficiently construct an operator acting on a particle number sector. Then,
Sec. 3 focuses on our divide-and-conquer algorithm. We start by discussing a concrete example
followed by the general algorithm. For further clarification, we present two important limits:
Lin’s original proposal [7, 40] with two subsystems and the limit dividing the system into L
subsystems containing a single site each [53]. Next, we refer to Cover’s formulation [52].
Sec. 4 introduces the core modules and usage of the DanceQ library. It discusses different
implementations of the lookup tables and analyzes their performance in order to identify the
optimal choice of partitioning. Next, we benchmark the performance of matrix-free matrix-
vector multiplication. The extensive documentation [46] offers further information for using
DanceQ and provides numerous examples. Lastly, Sec. 5 summarizes our work.

4

https://scipost.org/SciPostPhysCodeb.48
https://gitlab.com/DanceQ/danceq
https://gitlab.com/DanceQ/danceq

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

2 Overview

This section briefly introduces the problem and the most important features of the code nec-
essary to carry out a (matrix-free) matrix-vector product using parallel working threads.

2.1 The problem

We begin with a single lattice site with Q degrees of freedom, corresponding to a local Hilbert
space dimension Q, and label the basis states by |0〉, . . . , |Q − 1〉. A product state of the full
system composed of L such sites is represented by the tensor product of basis states of the
individual sites:

|σ⃗〉 :=
L
⊗

i=1

|σi〉= |σ1; . . . ;σL〉 with |σi〉 ∈ {|0〉, . . . , |Q− 1〉} . (4)

This induces a total Hilbert space dimension of QL for the full system of L sites. For systems
with particle number conservation, it is useful to systematically focus on states with a fixed
particle number n ∈ {0, . . . , (Q− 1)L}:

n̂|σ1; . . . ;σL〉=

� L
∑

i=1

σi

�

|σ⃗〉= n|σ⃗〉 . (5)

The number of such basis states with fixed particle number n is the dimension of the cor-
responding symmetry sector. For the case Q = 2, it is well known that the number of basis
states for n particles on a total of L is given by

DQ=2(L, n) =
�

L
n

�

, (6)

since it corresponds to the number of distinct ways to distribute n indistinguishable items
(particles) on L sites.

For the general case with arbitrary Q ≥ 2, the dimension of the symmetry sector with n
particles on L sites is given by

DQ(L, n) =
⌊n/Q⌋
∑

k=0

(−1)k
�

L
k

��

L − 1+ n−Qk
L − 1

�

, (7)

where ⌊•⌋ = floor(•) is the lower Gauss bracket defined by the integer part of the argument.
We provide an explicit elementary derivation of this result in Appendix A in the appendix. The
result in Eq. (7) was proven by Ref. [54] (cf. Eqs. (11), (12) in [54]), where it was also traced
back to early work by De Moivre. It has also been used to enumerate permanents in Bosonic
systems [55,56] and was derived in an alternative way by Ref. [57] in appendix B thereof.

In order to represent wave functions as vectors and operators as matrices on a computer,
it is necessary to impose a canonical order of all DQ(L, n) basis states in a symmetry sector.
This order can be arbitrary but must not be changed during the calculation. In condensed
matter physics and chemistry, the regime of interest is typically large L and n, and hence,
the goal is to obtain, for example, the low energy behavior of a model Hamiltonian, i.e., to
calculate the ground state in a given particle number sector. This can be achieved using Krylov
space techniques like the Lanczos algorithm [11, 12, 58], for which it is sufficient to be able
to calculate the action of the Hamiltonian H on an arbitrary many-body wavefunction H|ψ〉,
without storing the (large and usually very sparse) matrix representation of H.

5

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

To carry out the matrix vector product H|ψ〉 efficiently, it is crucial to be able to access
basis states by their index, i.e., the forward map

index→ |σ0,σ1, . . . ,σL−1〉, (8)

as well as to retrieve the index of a given basis state, i.e., the reverse map

|σ0,σ1, . . . ,σL−1〉 → index, (9)

because the action of an off-diagonal matrix element of H effectively changes the basis state,
and we have to determine the corresponding row index in the result vector. This task can in
principle, be fulfilled by a lookup table of size DQ(L, n) for the forward lookup (state from
index) and a lookup table of size QL for the reverse lookup (index to state), but this requires
an exponential memory overhead (by far exceeding the memory needed for storing wavefunc-
tions) and the goal of divide-and-conquer approaches as the one presented here is precisely
to avoid this overhead. Note that even though a forward lookup table of size DQ(L, n) for the
map

index→ |σ0,σ1, . . .σL−1〉 (10)

can in principle be stored (its size is the size of a wavefunction in the n particle sector), a
simple binary search in this table for reverse lookup of cost O(ln DQ(L, n)) (memory access) is
expensive.

2.2 The code

An efficient code requires a versatile enumeration scheme for the basis states. In the absence of
number conservation, one can either use simple integer counting or implement more advanced
schemes like Gray codes [59, 60]. The DanceQ library generates all basis states in any given
particle number sector to represent the corresponding block of an operator in this sector. A
parallelized program requires three different functions:

(i) get_index(|σ⃗〉)
Maps a valid (correct particle number) basis state |σ⃗〉 to a unique index in the canonical
basis order ranging from 0 to DQ(L, n)− 1.

(ii) increment(|σ⃗〉)
Returns the next valid basis state in the canonical basis order such that
get_index(|σ⃗′〉) = get_index(|σ⃗〉)+1
with |σ⃗′〉= increment(|σ⃗〉).

(iii) get_state(k)
The reversed mapping of function (i), i.e., it returns the basis state with a given index k
in the canonical basis order, such that
get_index(get_state(k)) = k.

The matrix-free matrix-vector product H|ψ〉 for any wave function |ψ〉 with coefficients
〈 σ⃗ |ψ 〉 is generated by iterating over all basis states of the particle number sector using func-
tion (ii). Function (iii) is only executed to obtain the initial state, which becomes non-trivial
in parallel programs, in which each worker transverses a different segment of the basis. An
operator in matrix form is obtained by applying it to a specific state defining the current row.
Then, function (i) is applied to obtain the respective column indices. Pictorially, a parallel
program would split the Hamiltonian matrix into rectangular blocks (left) and the input wave
function vector (center) and output vector (right) into subvectors like this:

6

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

=

While functions (i) and (ii) are frequently executed during the construction of the operator,
function (iii) is only used once per worker process. Each worker handling one consecutive part
of the basis (consecutive rows in the input wave function) executes the function (iii) in the
beginning to access its part. Pseudo codes for each function (Algo. 2, Algo. 3, Algo. 4) are
attached in the Appendix B in the appendix.

3 The algorithm

The key idea to efficiently handle fixed-n basis states |σ1,σ2 . . .σL〉 and to overcome the expo-
nential memory overhead is a “divide-and-conquer” ansatz where we divide the whole system
of size L into a partition with N subsystems.

P0 P1 P2 P3
. . . PN−1

We note that despite the pictorial representation in one dimension, this technique can be
used for any geometry of the physical system. It is, however, crucial to introduce an order of
the sites in the system, and this is reflected in the partitioning. The index of a specific state
is obtained by adding contributions from the individual subsystems, as we elaborate on in the
following section.

We label the subsystems by Pk, where k indicates the k-th part. Because our basis states
|σ⃗〉 are simple product states of single site states, they are also products of the individual
subsystem states:

|σ⃗〉= |σ⃗(0)〉P0
⊗ |σ⃗(1)〉P1

⊗ · · · ⊗ |σ⃗(N−1)〉PN−1
. (11)

The remainder of this section is structured as follows. We begin by discussing an illustra-
tive example using three subsystems, which are depicted in Fig. 1, Fig. 2, and Fig. 3. After
the example, we discuss the generalization of the algorithm to N subsystems. To connect to
prior work, we present two important limits, including Lin’s original approach [7], which cor-
responds to the case of two subsystems and the limit of N = L subsystems [53] of size one
which both follow trivially from the general formalism.

3.1 A concrete example

To understand the general idea of the multidimensional index lookup, it is useful to begin
with an illustrative example. We consider a system of L = 9 sites with Q = 2 and a total
of n = 4 particles, split into N = 3 subsystems which we label A ≡ P0, B ≡ P1, C ≡ P2 for
simplicity. The total number of states is D2(9, 4) = 126. We take all systems to have the same
length LA = LB = LC = 3. While the allowed states of the total system are limited by the fixed
particle number n = 4, each subsystem can in principle be in any of the QLA = 23 = 8 states:
|000〉, |001〉, |010〉, |100〉, |011〉, |101〉, |110〉, and |111〉, however, if A is in state |111〉, B can
only be in |000〉, |001〉, |010〉, or |100〉 due to the global constraint and it is precisely this kind
of restriction which we need to deal with when enumerating all valid states.

7

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

|~σ C
〉 →

i C

000→
0

001→
0

010→
1

100→
2

011→
0

101→
1

110→
2

111→
0|~σB〉 → iB

0
0

0
→

0

0
0

1
→

0

0
1

0
→

1

1
0

0
→

2

0
1

1
→

0

1
0

1
→

1

1
1

0
→

2

1
1

1
→

0

|~σ
A
〉 →

i
A

000→ 0

001→ 0

010→ 1

100→ 2

011→ 0

101→ 1

110→ 2

111→ 0

0 1 2

3
4

5

6
7

8

9
10

11

12
13

14
15

16
17

18

19
20

21

22
23

24

25
26

27

28
29

30

31
32

33

34

35

36
37

38

39
40

41

42
43

44

45
46

47

48
49

50

51
52

53

54

55

56
57

58

59
60

61

62
63

64

65
66

67

68
69

70

71
72

73

74
75

76
77

78
79

80

81
82

83

84
85

86

87 88 89
90

91
92

93
94

95

96
97

98

99
100

101

102 103 104
105

106
107

108
109

110

111
112

113

114
115

116

117 118 119

120
121

122

123 124 125

Figure 1: Illustration of the three-dimensional search structure emerging from three
subsystems, A, B, and C . Each subsystem consists of three sites; the full system has
hence length L = 9, and the figure shows all D2(9, 4) = 126 basis states for Q = 2 and
n= 4 particles. (Light) blue and red colored balls connected by blue and green lines
indicate the path to finding the index 50 of the state |σ⃗〉= |010〉A⊗ |101〉B ⊗ |100〉C
using the divide and conquer approach. We start with the state |010〉A on the A
subsystem. It is in the nA = 1 block, which has an offset of 15 (light blue). Within
this block, |010〉A has the index iA = 1, and the stride of this block is strideA = 20.
Hence, the contribution cA to the final index is cA = offsetA + iAstrideA= 35 (dark
blue). The state on subsystem B, |101〉B has the index iB = 1 in the nB = 2 block
with offsetB = 10 and strideB = 3, yielding cB = 13. This brings us to the index
cA+ cB = 48 (dark blue) and by finally considering |100〉C with index 2 in the nC = 1
block (with offset 0 and stride 1 since this is the last subsystem), we get cC = 1.
Hence, the final result for the desired index is cA+ cB + cC = 50 (red ball).

Suppose we order the states in each subsystem by the number of particles in the subsys-
tem (the above list is already ordered in this way), and plot the subsystem states in the x ,
y , and z axes of the 3d plot in Fig. 1. In that case, we can enumerate all allowed states
|σ⃗〉A⊗|σ⃗〉B⊗|σ⃗〉C and draw a point at the appropriate position of the coordinate system along
with the corresponding index of the obtained state in the full basis. The emerging structure in
Fig. 1 are dense blocks of states, while the voids between the blocks correspond to states that
do not fulfill the global constraint n= 4. Each dense cuboid block is made from all states with
fixed subsystem particle numbers, i.e., with fixed (nA, nB, nC). This structure highlights the
importance of ordering the subsystem bases by particle numbers and makes the key concept
clear: We now have a structure of dense blocks of states in which we can efficiently retrieve
the index of any state if we are able to skip all prior blocks in a straightforward way. To do
this, we first explain how we organize the global basis states, i.e., in which sequence we walk
through the structure shown in Fig. 1.

We choose to first increment the state of the C subsystem, keeping the order of states
organized by the subsystem particle number nC , as pointed out before. Once the subsystem

8

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

000 → 0
001 → 0
010 → 1
100 → 2
011 → 0
101 → 1
110 → 2
111 → 0

|ψ
B
〉→

i B

offsetA

|ψA〉 = 000

0

1

2

3 4 5

6 7 8

9 10 11

12 13 14 nA = 0

strideA

|ψA〉 = 001

15

16 17 18

19 20 21

22 23 24

25 26 27

28 29 30

31 32 33

34 nA = 1

offsetB

strideB

|ψA〉 = 010

35

36 37 38

39 40 41

42 43 44

45 46 47

48 49 50

51 52 53

54 nA = 1

|ψA〉 = 100

55

56 57 58

59 60 61

62 63 64

65 66 67

68 69 70

71 72 73

74 nA = 1

0
0

0
→

0
0

0
1
→

0
0

1
0
→

1
1

0
0
→

2
0

1
1
→

0
1

0
1
→

1
1

1
0
→

2
1

1
1
→

0

|ψC〉 → iC

000 → 0
001 → 0
010 → 1
100 → 2
011 → 0
101 → 1
110 → 2
111 → 0

|ψ
B
〉→

i B

|ψA〉 = 011

75 76 77

78 79 80

81 82 83

84 85 86

87

88

89
nA = 2

0
0

0
→

0
0

0
1
→

0
0

1
0
→

1
1

0
0
→

2
0

1
1
→

0
1

0
1
→

1
1

1
0
→

2
1

1
1
→

0
|ψC〉 → iC

|ψA〉 = 101

90 91 92

93 94 95

96 97 98

99 100101

102

103

104
nA = 2

0
0

0
→

0
0

0
1
→

0
0

1
0
→

1
1

0
0
→

2
0

1
1
→

0
1

0
1
→

1
1

1
0
→

2
1

1
1
→

0

|ψC〉 → iC

|ψA〉 = 110

105106107

108109110

111112113

114115116

117

118

119
nA = 2

0
0

0
→

0
0

0
1
→

0
0

1
0
→

1
1

0
0
→

2
0

1
1
→

0
1

0
1
→

1
1

1
0
→

2
1

1
1
→

0

|ψC〉 → iC

|ψA〉 = 111

120121122

123

124

125

cA=35
offsetA=15
strideA=20

cB=13
offsetB=10
strideB=3

cC=2

n
A

=
3

Figure 2: Indexing of all basis states in the n= 4 particles sector on L = 9 sites with
Q = 2 states each based on partitioning of the system into three subsystems A, B, and
C . The subsystem basis states are grouped by the subsystem particle number, and
the indices within each subsystem particle number sector are illustrated by 100→ 2,
which means that the state |100〉 has index 2 in the sector where the subsystem has
one particle. The different panels correspond to horizontal slices (one for each basis
state on the A subsystem in Fig. 1). The emerging block structure in this figure is the
key concept behind the algorithm; each block corresponds to fixed particle numbers
for all subsystems. Since each subsystem particle number may have a different size,
there is a hierarchy of offsets (first index in the global ordering where the subsystem
particle number sector begins) and strides (by how much the global index grows if a
subsystem state is incremented to the next legal option within the sector).

state |σ⃗〉C has cycled through all possible states (which sometimes are single choices as visible
for states 0, 1, and 2 in Fig. 1) for fixed states on A and B, we increment the B state and only
once also B has exhausted its allowed states, the A state is incremented, moving up to the next
‘layer’ in the z direction in Fig. 1. This imposes a hierarchy where the state on subsystem C
changes the fastest when we iterate through all global basis states. The subsystem state on
A is the leading part and defines horizontal cuts perpendicular to the z-axis in Fig. 1. Within
each layer, fixing the subsystem state B reduces accessible basis states to a column, which only
differ by the C state. Finally, specifying the state on subsystem C fully determines the global
state (which is a point) within the layer defined by A and the column additionally defined by
B.

This structure is advantageous for retrieving the index of a particular state |σ⃗〉A⊗|σ⃗〉B⊗|σ⃗〉C
with the help of a few lookup tables. Each subsystem contributes an additive part cA, cB, or cC
to the final index, which is then given by the sum of these parts. Here, cA identifies the correct
layer, cA+ cB points to the beginning of the column, and cA+ cB + cC yields the final index. In
Fig. 1, we discuss the example to retrieve the index of the state |010〉A⊗|101〉B⊗|100〉C . For this
case, the correct layer is the third from the bottom and determined by the state |σ⃗〉A = |010〉A.

The contribution cA points to the first state (with index 35) in this layer, and it is clear that
cA therefore counts the number of all states prior to the target layer in the first and second
layers in Fig. 1. In Fig. 2, we provide a more detailed view of the same structure by showing
each of the eight layers in an individual panel. cA = 35 then corresponds to the first state in

9

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

offsetA strideA offsetB strideB
3 · strideC

0

0

0

0

0

1

1

1

1

0

0

0

0

1

0

1

1

1

0

0

0

1

0

0

1

1

1

0

0

0

0

1

1

0

1

1

0

0

0

0

1

1

1

0

1

0

0

0

0

1

1

1

1

0

0

0

0

1

0

1

0

1

1

0

0

0

1

0

1

1

0

1

0

0

0

1

0

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

0

1

1

0

1

0

1

0

0

0

1

1

0

1

1

0

0

0

0

1

1

1

0

0

1

0

0

0

1

1

1

0

1

0

0

0

0

1

1

1

1

0

0

0

0

1

0

0

0

1

1

1

0

0

1

0

0

1

0

1

1

0

0

1

0

0

1

1

0

1

0

0

1

0

0

1

1

1

0

0

0

1

0

1

0

0

1

1

0

0

1

0

1

0

1

0

1

0

0

1

0

1

0

1

1

0

0

0

1

1

0

0

0

1

1

0

0

1

1

0

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

1

0

1

1

0

0

1

0

0

1

0

1

1

0

1

0

0

0

1

0

1

1

1

0

0

0

0

1

1

0

1

0

0

1

0

0

1

1

0

1

0

1

0

0

0

1

1

0

1

1

0

0

0

0

1

1

1

0

0

0

1

0

0

1

1

1

0

0

1

0

0

0

1

1

1

0

1

0

0

0

0

1

1

1

1

0

0

0

0

1

0

0

0

0

1

1

1

0

1

0

0

0

1

0

1

1

0

1

0

0

0

1

1

0

1

0

1

0

0

0

1

1

1

0

0

1

0

0

1

0

0

1

1

0

1

0

0

1

0

1

0

1

0

1

0

0

1

0

1

1

0

0

1

0

1

0

0

0

1

1

0

1

0

1

0

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

0

0

1

1

0

0

1

0

1

0

0

1

1

0

1

0

0

1

0

0

1

1

1

0

0

0

1

0

1

0

1

0

0

1

0

1

0

1

0

1

0

1

0

0

1

0

1

0

1

1

0

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

A

B

C

Figure 3: Example breakdown for finding the index of the 50-th state (red)
|010〉A⊗|101〉B ⊗|100〉C following the example Fig. 1 and Fig. 2. We explicitly show
the first 50 states in the basis and highlight the contribution of the three subsys-
tems A, B, and C in yellow, light green, and dark green, respectively. Beginning
with |010〉A, we find that it has nA = 1, and we hence skip ahead to the first state
with nA = 1, which is state offsetA (nA,λA) = 15. Incrementing the state in A in
this sector increases the global index by 20; this is strideA (nA,λA) = 20. |010〉A has
indexA(σ⃗(A)) = 1, see Table 1, in the subsystem basis of the nA = 1 sector and we
hence skip forward to the global index cA = offsetA + indexA · strideA = 35. We ob-
serve that in the slice ahead from global index 35 to our target index 50, the A state
no longer changes and we can now move on to subsystem B. The state of subsystem
B is |101〉B, which is located in the nB = 2 sector. We have to skip ahead the global
index by offsetB (nB,λB) = 10 to reach the first state in the nA = 1, nB = 2 sector.
In this sector, we see that the global index increases by strideB (nB,λB) = 3 if we
increment the B state. The state |101〉B has indexB(σ⃗(B)) = 1 in the subsystem basis,
again see Table 1, of the nB = 2 sector and we hence have to increment the global
index by cB = offsetB (nB,λB) + strideB (nB,λB) · indexB(σ⃗(B)) = 13 to reach the first
state in the global basis with the correct subsystem states on A and B. This state has
the index cA+ cB = 48 and fulfills the constraint |σ⃗(A)〉 = |010〉 and |σ⃗(B)〉 = |101〉B.
Since C is the last subsystem, it does not have an offset, offsetC (nC ,λC) = 0, and its
strideC (nC ,λC) = 1. Therefore, incrementing the state on subsystem C directly in-
crements the global basis index by one. Its index is indexC(σ⃗(C)) = 3 yielding cC = 2,
and the final index is retrieved cA+ cB + cC = 50.

the third (target) panel in Fig. 2.
Similarly, we next consider the state on subsystem B, |σ⃗〉B = |101〉B, which allows us to

skip forward in the global basis to the target column in Fig. 2 where our final state is located.
The number of states to skip depends on the particles in B and A. The column determined
by |σ⃗〉A and |σ⃗〉B starts with index cA + cB = 48. The third panel in Fig. 2 highlights the
contribution cB = 13, which can be illustrated as the number of states in the layer occurring
before we reach the target state on B.

Finally, the state of the C subsystem |σ⃗〉C = |100〉C determines the location within the col-
umn which corresponds to the index of the C state in the nC sector of the C basis: cA+cB+cC = 50
with cC = 2.

10

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

3.2 General recipe

The idea illustrated in the previous section can be formalized and generalized to any number
of subsystems and particles. Similarly to the example from Sec. 3.1, the global index of a basis
state |σ⃗〉 is obtained by summing up contributions from all subsystems:

index(|σ⃗〉) =
N−1
∑

k=0

ck(nk,λk, σ⃗(k)) . (12)

Each coefficient ck is positive and depends on the number of particles nk in the subsystem Pk,
the number of particles λk in the previous subsystems P0 . . . Pk−1 and on the subsystem state
on Pk, |σ⃗(k)〉. Hence, the final index monotonically increases while traversing through the
subsystems. It corresponds to the cumulative number of global basis states occurring in our
chosen canonical order before the subsystem state reaches the target state. By cumulative, we
mean here that we first count such states to fix the P0 state and from here we start counting
from zero again to determine the number of global states we have to increment before P1
reaches the target state, i.e. we keep the state on P0 fixed (analogous to first fixing the layer,
and then counting the number of states to reach the target column in the three-dimensional
example).

Therefore, we traverse through all subsystems, beginning with P0, respecting the total
particle number constraint of n. All allowed states1 on P0 are sorted with regard to their
particle number which we denote n0. For fixed subsystem particle number n0, each subsystem
state has a unique, zero based index index0(|σ⃗〉0). An example of such an order is given in
Table 1. Given a subsystem state |σ⃗〉0 with n0 particles on the first subsystem P0, there are
DQ(L−L0, n−n0) possible states in the complement of P0 of size L−L0 with n−n0 particles that
fulfill the global particle number constraint of n. The coefficient c0 from Eq. (12) counts all
states in the global basis that occur before P0 reaches the target state. For each prior subsystem
state on P0, we hence have to take into account all configurations on the complement of P0,
which can be paired with the P0 state while fulfilling the global constraint of fixed particle
number n.

Once we have determined c0, the P0 state is fixed and the dimensionality of the problem is
effectively reduced from N to N −1 subsystems. Now, the same strategy can be applied to P1.
Since we no longer have to worry about P0, to determine c1, we only have to count combina-
tions with legal states in the remaining subsystems P2, P3, . . . PN−1 of total size L− L0− L1 and
the effective particle number constraint is n − n0 since n0 particles are already bound to P0.
This recursive scheme is carried out through the entire system until the last subsystem PN−1 is
reached, and the final index is recovered.

Each contribution ck is composed of two parts: (i) an offset counting all basis states with
subsystem particle number lower than nk and (ii) a stride determined by how much the global
index increases if the subsystem state is incremented within the particle number sector nk.
Together with the zero-based index of the subsystem state |σ⃗(k)〉 in the subsystem particle
number sector, we then have the explicit expression

ck = offsetk(nk,λk) + stridek(nk,λk) · indexk(σ⃗
(k)) . (13)

Here, nk is the local particle number within the k-th subsystem, and λk is the total particle
number contained in the subsystems P0 to Pk−1 to the left of Pk:

λk =
k−1
∑

i=0

ni . (14)

1If a subsystem can host more than n particles, or if all other subsystems together can not host all n particles,
the global constraint may disallow certain subsystem states and limit accessible subsystem states.

11

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

The state of the subsystem is |σ⃗(k)〉 and has a zero based indexk(σ⃗(k)) in each subsystem particle
number sector. Similarly to the two-dimensional search [7], indexk(σ⃗(k)) refers to a local
lookup table of Pk that maps |σ⃗(k)〉 to an integer running from zero to DQ(Lk, nk) − 1. The
mapping within a particle number sector nk can be arbitrary but has to be bijective such that
each subsystem state maps to a unique number within the given interval. One possible lookup
table for subsystems of length Lk = 3 with Q = 2 is listed in Table 1, which is used in the
example Fig. 1 and Fig. 2.

nA |σ⃗A〉 indexAσ⃗A

0 |000〉 0
1 |001〉 0
1 |010〉 1
1 |100〉 2

nA |σ⃗A〉 indexAσ⃗A

2 |011〉 0
2 |101〉 1
2 |110〉 2
3 |111〉 0

Table 1: Example for a lookup table-for subsystem A from Fig. 1 and Fig. 2. The
choice within each particle number sector can be arbitrary.

3.2.1 The Offset

To derive the expression for the required offsets, we start from the first subsystem P0 and a
given state |σ⃗(0)〉 with n0 particles. The offset counts all possible states with a lower particle
number than n0. Due to the globally fixed particle number n, there is a lower bound for the
number of particles nlow

0 that must be placed in the subsystem P0. If the complement of P0 is
large enough to accommodate all n particles, nlow

0 = 0, else, it has to reflect the fact that at least
nlow

0 = max (0, n− (Q− 1)(L − L0)) need to be placed in the subsystem P0 to satisfy the con-
straint. For each valid particle number k0 on P0, there are DQ(L0, k0) possible configurations
for states on P0. Each such state can be combined with any state in the complement (all other
subsystems) of length L− L0 with n−k0 particles in it, and there are DQ(L− L0, n−k0) choices
for this. Therefore, we find a total of DQ(L0, k0)DQ(L− L0, n−k0) states with the constraints of
k0 particles in P0 and n particles in total. In sum, to account for each valid subsystem particle
number sector k0 that is lower than n0, we find

offset0(n0) =
n0−1
∑

k0=nlow
0

DQ(L0, k0)DQ(L − L0, n− k0) . (15)

For the next subsystem, P1, it is crucial to realize that the state and particle number on P0
is already fixed, effectively reducing the dimensionality of the remaining problem by one. We,
hence, only need to consider the remaining n − n0 particles. The length of the complement
C1 = P0 ∪ P1 is

Γ1 = L − L0 − L1 , (16)

and it needs to host n− n0 − k1 particles, if P1 hosts k1 particles. With the minimal allowed
number of particles in P1 given by nlow

1 =max(0, n− n0 − (Q− 1)Γ1), the offset for P1 is given
by

offset1(n1,λ1) =
n1−1
∑

k1=nlow
1

DQ(L1, k1)DQ(Γ1, n−λ1 − k1) , (17)

where λ1 = n0, the number of particles already locked into P0.

12

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

Taking the general form for the length of complement Ci of subsystem Pi ,

Γi = L −
i−1
∑

l=0

Ll , (18)

we can generalize the offset for subsystem Pi to

offseti(ni ,λi) =
ni−1
∑

ki=nlow
i

DQ(Li , ki)DQ(Γi , n−λi − ki) . (19)

Depending on the particle number and the subsystem length, there might be a minimal amount
of nlow

i particles that must be placed in Pi to match the global constraint of n particles. The
general form is given by nlow

i =max(0, n−λi − (Q− 1)Γi). Importantly, for the last subsystem
PN−1, since the global number of particles is fixed, its particle number equals the lower bound
nlow

N−1 yielding offsetN−1 (nN−1,λN−1) = 0.

3.2.2 The Stride

In addition to the offsets, which bring us to the beginning of the relevant subsystem particle
number sectors, we need to determine the increase in the global index if the subsystem state
is incremented within the particle number sector nk.

To understand the stride, let us start again with the first state |σ⃗(0)〉 on P0 with n0 particles.
The lookup table for P0 assigns a unique index i0 = index0(σ⃗(0)) to |σ⃗(0)〉, which means that
i0 subsystem states are ranked lower than |σ⃗(0)〉 within the same particle number sector n0.
Sec. 4.2 discusses the tables and their construction in more detail. As pointed out in the
previous paragraph, the complement C0 of P0 contains all subsystems P1 to PN−1 and is of size
Γ0 = L − L0. The stride is the number of states in the complement such that the total particle
number constraint n is fulfilled. For any state in P0 with n0 particles, this number is

stride0 (n0,λ0) = DQ(L − L0, n− n0) . (20)

Hence, the number of all possible basis states that can be constructed with the i0 subsystem
states that are ranked lower than |σ⃗(0)〉 is simply DQ(L − L0, n− n0) · i0.

Similarly to the offset, this reduces the dimensionality of the problem when we move to
the second subsystem P1. Again, we use its lookup table to obtain the index i1 = index1(σ⃗(1))
of |σ⃗(1)〉 with n1 particles. Since n0 particles are a already placed in P1 its complement C1 of
size Γ1 = L − L0 − L1 has to contain n− n0 − n1 particles leading to (λ1 = n0)

stride1 (n1,λ1) = DQ(L − L0 − L1, n− n0 − n1) (21)

possibilities for each state with n1 particles in P1. Therefore, the stride contribution, counting
all states with the constraint |σ⃗(0)〉 on P0 and a lower index than i1 on P1, is

DQ(L − L0 − L1, n− n0 − n1) · i1. (22)

Following this scheme, we can generalize the stride contribution for the i-th subsystem
with the state |σ⃗(i)〉 and ni particles. Its index is again retrieved from Pi ’s lookup table:
ii = indexi(σ⃗(i)). The previous subsystems P0 to Pi−1 contain λi =

∑i−1
i=0 ni particles reducing

the global constraint to n − λi particles on Pi and its complement Ci . The general form of
stride counting the number of possible states with n − λi − ni in the complement Ci of size
Γi = L −

∑i
k=0 Lk is

stridei (ni ,λi) = DQ(Γi , n−λi − ni) . (23)

13

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

Hence, the number of states with the constraints |σ⃗(i)〉 on Pi for i = 0, . . . , i − 1 and lower
ranked subsystem states on Pi with ni particles is DQ(Γi , n−λi−ni)· ii . Since the last subsystem
does not have a complement, its stride is simply one: strideN (nN ,λN) = 1.

We have transformed the three-dimensional example from Fig. 1 into a list shown in Fig. 3,
which highlights the individual contributions in the form of offsets and strides. A detailed
explanation is given in the caption.

3.3 Two important limits

Next, we want to discuss two important limits of the algorithm: N = 2 and N = L. We start
by discussing the original approach by Lin [7] that is based on two subsystems. Then, we
illustrate the opposite limit [53], which consists of N = L subsystems of size one.

3.3.1 Two subsystems (N = 2)

The case with two subsystems is special as a state in P0 with n0 particles fixes the number
of particles in P1 due to the global constraint: n1 = n − n0. In this case, we can store the
individual contributions c0 and c1 directly into two lookup tables that label the local basis
states as shown in Table 1. Since P1 is the last subsystem, the offset is zero, and the stride is
always one. Hence, c1 reduces to index1(σ⃗(1)), simply the bare lookup table we discussed. This
corresponds to system A with Ja(Ia) in table II of Ref. [7]. Note that Ref. [7] does not work
with zero-based indexing, which is used throughout this manuscript and the accompanying
code.

Now, to incorporate the contribution of the first subsystem P0, we overwrite its original
lookup table – which maps |σ⃗(0)〉 to a unique index index0(σ⃗(0)) – simply by its total contri-
bution:

c0 = offset0 (n0,λ0) + stride0 (n0,λ0) index0(σ⃗
(0)) . (24)

The offset and stride are given by Eq. (15) and Eq. (20) :

offset0 (n0,λ0) =
n0−1
∑

k0=nlow
0

DQ(L0, k0)DQ(L1, n− k0) (25)

stride0 (n0,λ0) = DQ(L1, n− n0) . (26)

The newly overwritten table corresponds to part B with Jb(Ib) in the table II from Ref. [7].
While the trick to store the coefficients directly into the lookup table works for N = 2 due

to the global constraint, the scheme is not possible for N > 2, and we have to account for this
by tracking the particle number using λi .

3.3.2 L subsystems (N = L)

The opposite limit, evaluating N = L subsystems of size one, can be done “on-the-fly” as it
does not require the use of lookup tables. Since each system is of size one, it can have at most
Q different states |qi〉 with qi = 0, . . . ,Q−1. Therefore, there is only one state in each particle
number sector in Pi inducing indexi(σ⃗(i)) = 0 Then, the contribution of the i-th subsystem
simplifies to:

ci = offseti(qi ,λi) =
qi−1
∑

ki=nlow
i

DQ(Γi , n−λi − ki) . (27)

14

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

We have outlined the algorithm for N = L in Algo. 1 and refer it as the “on-the-fly” implemen-
tation throughout the rest of the manuscript.

In the binary case (Q = 2), the formula to compute the index was already derived in
Ref. [51,52]. Ref. [53] explicitly applied this scheme to enumerate product states in physical
systems for arbitrary Q.

Algorithm 1: On-the-fly
Data: |σ⃗〉= |q0; . . . ;qL−1〉
index, λ= 0 /* initializing variables */
Γ = L − 1
for 0≤ i < L − 1 do

for 0≤ k < qi do
if n−λ− 1− k ≤ (Q− 1)Γ then

index= index+ DQ(Γ , n−λ)
end
λ= λ+ 1

end
Γ = Γ − 1

end
return index;

3.4 Enumerative encoding

The presented enumeration of basis states is an old problem in computer science and combi-
natorics [61]. In particular, Cover presented a generic ansatz in 1973 to compute the lexico-
graphic one-to-one mapping and its inverse [52]. The idea behind his approach reflects the
divide-and-conquer ansatz used in the derivation of our multidimensional search algorithm.
In fact, we can use his formulation to derive our algorithm.

To formulate the problem in a computer science language, let x⃗ = (x0, . . . , xN−1) be a
word of length N and x i ∈ {0, . . . ,Q − 1} the letters from an alphabet of size Q. Then, the
lexicographic order, x⃗ < y⃗ , is defined by x i < yi where i is the smallest index with x i ̸= yi .

Given any arbitrary subset S of all possible words of length N , we can use Cover’s formula
given in proposition 2 in Ref. [52] to find the lexicographic one-to-one mapping:

S → {0, . . . , |S| − 1} . (28)

There, he defines the number of elements in S for which the first k letters are (x0, . . . , xk) by
nS(x0, . . . , xk). The general formula that provides the desired mapping for x⃗ is:

index(x⃗) =
N−1
∑

k=0

xk−1
∑

l=0

nS(x0, . . . , xk−1, l) . (29)

To demonstrate the generality of this ansatz, we have chosen a generic – not number
conserving – set:

S = {(0,2, 0), (0, 2,1), (1,0, 1), (2, 0,0), (2,2, 0), (2, 2,1)} .

The set is already lexicographically ordered, and we can illustrate the counting of nS . For
example, the number of elements starting with (1) is nS(1) = 1 and with (0, 2) is nS(0,2) = 2.
Following the Eq. (29) , we derive the index of the last element x⃗ = (2,2, 1) which is 5:

index(x⃗) =nS(0) + nS(1)
︸ ︷︷ ︸

k=0

+nS(2,0) + nS(2,1)
︸ ︷︷ ︸

k=1

+nS(2,2, 0)
︸ ︷︷ ︸

k=2

= 2+ 1+ 1+ 0+ 1= 5 .

15

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

Similarly to our multidimensional search algorithm, the first contribution, k = 0, takes
care of all elements in S that have a smaller letter than x0. This refers to the first contribution
cA in Fig. 1 that identifies the correct plane. The second part, k = 1, refers to cB and jumps to
the correct column. Lastly, k = 2 takes care of the last part and refers to the contribution cC .

To relate this ansatz to our number constraint, we first use Eq. (29) to derive the N = L
limit with arbitrary Q. The contribution of the k-th subsystem is

ck =
xk−1
∑

lk=0

nS(x0, . . . , xk−1, lk) . (30)

The number of possible configurations in S that begin with (x0, . . . , xk−1) and fulfill the particle
number constraint n=

∑

k xk are

nS(x0, . . . , xk−1, lk) = DQ(L − 1− k, n−λk − lk) .

L − 1− k is the length of the complement defined earlier by Γk. λk is the number of particles
contained up to subsystem Pk: λk =

∑k−1
s=0 xs. As we discussed in the preceding section, there

might be a constraint on lk restricting the sum in Eq. (30) to lk ∈ {nlow
k , . . . , xk − 1}. This can

be extracted from the definition of nS(. . .) which is simply zero if lk < nlow
k . We have derived

the same contribution for N = L given in Eq. (27) using the general formalism from Cover.
Similarly, we can derive the offset and stride for the generic case. For simplicity, we choose

an equal partitioning where all subsystem sizes are identical. In this case, the alphabet is grow-
ing exponentially with system size and each subsystem can have M = 2L/N states. Therefore,
each x i = 0, . . . , M − 1 can take exponentially many values. To define a lexicographical order,
we first have to impose a canonical ordering within each subsystem. Following the previous
section, all M states are ordered by particle their number (lower number first), and we use a
lookup table, cf. Table 1, to impose the order within each particle number sector. Each letter
x i refers to a substate on Pk and has an associated particle number n(x i) = 0, . . . , L/N(Q−1).
The subset S is defined by the global particle number constraint n, and we use Eq. (29) to
derive the index of x⃗ ∈ S. The contribution of the k-th subsystem is:

ck =
xk−1
∑

lk=0

nS(x1, . . . , xk−1, lk) . (31)

Note that the sum runs over exponentially many letters. To avoid adding this exponential
overhead, we simply group letter lk ∈ {0, . . . , xk − 1} into particle number sectors mk on Pk:

xk−1
∑

lk=0

→
n(xk)
∑

mk=0

xk−1
∑

lk=0

δmk ,n(lk) .

n(lk) is the number of particles of the lk-th state on Pk. For a given particle number mk < n(xk),
the number of states contained in the sum are DQ(L/N , mk). Crucially, note that the number
of words in S starting with (x0, . . . , xk−1, lk) only depends on number of particles contained
in subsystem P0 to Pk: λk + n(lk). Therefore, grouping the states according to their particle
number greatly simplifies the equation as we can replace nS(x1, . . . , xk−1, lk) by nS(λk, mk):

ck =
n(xk)−1
∑

mk=0

DQ(L/N , mk)nS(λk, mk) + indexk(σ⃗
(k))nS(λk, n(xk)) .

Here, |σ⃗(k)〉 refers to the state associated with the letter xk and indexk(σ⃗(k)) is the index in the
particle number sector nk = n(xk). This form makes the origin of the offset and stride clear. To

16

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

finally determine nS(λk, mk), we can use the same argument as in the previous section. Given
the total constraint n, we already have n− λk −mk particles distributed on subsystems P0 to
Pk. Therefore, the number of possible configurations in S starting with any string (x0, . . . , xk)
that contains λk+mk particles is nS(λk, mk) = DQ(Γk, n−λk−mk)where Γk is the length of the
complement. Note that Cover’s formula implicitly includes the lower bound on the particles
on Pk as nS(λk, mk) = 0 of mk < nlow

k . Hence, we have derived our expression for ck from
Eq. (13) with the same offsets Eq. (19) and strides Eq. (23) .

4 DanceQ

DanceQ [45] is a high-performance library designed for a wide range of exact diagonaliza-
tion techniques, serving as a frontend to state-of-the-art numerical libraries like Intel’s Math
Kernel Library or Petsc [47,48] and Slepc [49,50]. It achieves scalability and efficiency
by leveraging the divide-and-conquer algorithm outlined before.

This section provides an overview of DanceQ’s core modules, usage, and performance
benchmarks. Sec. 4.1 begins by introducing the general layout and its usage. Sec. 4.2 in-
troduces different implementations of the lookup tables and their performance is evaluated
in Sec. 4.3. Finally, in Sec. 4.4, we explore DanceQ’s performance in executing MPI-based
matrix-free matrix-vector multiplication – a key task of the library. For further details, please
refer to the full documentation [46].

4.1 Core Modules and Usage

DanceQ’s architecture is built on a hierarchy of interconnected core modules. These include
the State, Basis, and Operator classes, each playing a pivotal role in enabling high-performance
computations.

State class The State class forms the inner core of DanceQ and uses a primitive bit-level
structure for efficient storage and manipulation of product states. It provides the full func-
tionality needed by more abstract modules such as the Basis and Operator class. To allow for
maximal efficiency, the integer length representing a product state must be specified at com-
pile time. This is done by defining the maximum number of sites potentially used via MaxSites
and the local Hilbert Space dimension Q. When executed, smaller system sizes can be used
without any concern.

#include "State.h"

/* Maximal system size */
#define MaxSites 128

/* Hilbert space dimension */
#define Q 2

/* Definition of the State class */
using State = danceq :: internal ::State <MaxSites ,Q>;

Basis Class The BasisU1 class, referred to as Basis class, builds upon the State class and im-
plements our number-conserving algorithm. It manages the lookup tables through a Container
class, which comes in three implementations described in the next subsection: (i) memory-
aligned list (default, ContainerTable), (ii) lexicographical order (ContainerDict), and (iii) com-
binatorial on-the-fly approach (ContainerFly). Users can specify the number of sites and par-

17

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

ticles at runtime, provided the number of sites does not exceed MaxSites and offers sufficient
space to host the requested particle number.

#include "BasisU1.h"

/* Definition of the Container class */
using Container = danceq :: internal :: ContainerTable <State >;

/* Definition of the Basis class */
using Basis = danceq :: internal ::BasisU1 <Container >;

Operator Class The Operator Class serves as the interface for the user. It can be constructed
from the Basis class and supports the input of generic operator strings. Besides its number-
conserving implementation, it allows for not number-considering systems when built from the
State class. It further supports different float types by using ScalarType.

#include "Operator.h"

/* Scalar type for computation */
using ScalarType = std::complex <double >

/* Definition of the Hamiltonian class from the BasisU1 class
*/

using Hamiltonian_U1 = danceq :: internal ::Operator <Basis ,
ScalarType ,danceq :: Hamiltonian >;

/* Definition of the Hamiltonian class from the State class */
using Hamiltonian_NoU1 = danceq :: internal ::Operator <State ,

ScalarType ,danceq :: Hamiltonian >;

This class handles Hamiltonian operators acting on the Hilbert space, as well as Lind-
bladians operating on the space of density matrices. This flexibility applies to both number-
conserving and non-number-conserving systems.

/* Definition of the Lindbladian class from the BasisU1 class
*/

using Lindbladian_U1 = danceq :: internal ::Operator <Basis ,
ScalarType ,danceq :: Lindbladian >;

/* Definition of the Lindbladian class from the State class */
using Lindbladian_NoU1 = danceq :: internal ::Operator <State ,

ScalarType ,danceq :: Lindbladian >;

The interface is inspired by the ITensor library [62,63], which provides a straightforward
input via strings. It comes with pre-implemented local operators like S x , S y , and Sz , but
also allows for the definition of custom local operators. Below you can find an example for a
Lindbladian operator with a dephasing term acting on site zero.

/* System size and particle number */
uint64_t N = 10;
uint64_t n = 5;

/* Lindbladian with number conservation */
Linbladian_U1 L(N,n);

/* Heisenberg model with OBC */
for(uint64_t i = 0; i < N-1; i++){

L.add_operator (1., {i,(i+1)}, {"Sx","Sx"});

18

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

L.add_operator (1., {i,(i+1)}, {"Sy","Sy"});
L.add_operator (1., {i,(i+1)}, {"Sz","Sz"});

}

/* Jump operator acting on the first site */
L.add_jump_operator (1., {0}, {"Sz"});

The Operator class is a versatile tool, offering multiple formats for retrieving the matrix.
In addition to supporting third-party matrix formats, it provides a custom-built sparse matrix
and shell matrix. The latter one is used for matrix-free applications.

/* Dense matrix using std::vector <std::vector <std::complex <
double >>> */

auto L_dense = L.create_DenseMatrix ();

/* Dense matrix with Eigen using the type Operator ::
EigenMatrixType */

auto L_eigen = L.create_EigenDense ();

/* Sparse matrix using the SparseMatrix class */
auto L_sparse = L.create_SparseMatrix ();

/* Shell matrix using the ShellMatrix class for matrix -free
multiplication */

auto L_shell = L.create_ShellMatrix ();

/* Sparse matrix with Petsc MatType MATMPIAIJ */
auto L_sparse_petsc = L.create_PetscSparseMatrix ();

/* Shell matrix with Petsc using the ShellMatrix class */
auto L_shell_petsc = L.create_PetscShellMatrix ();

Internally, the Operator class uses a sparse tensor storage to act on any product state. Details
about the idea and the implementation can be found in Appendix C.

Setup The core modules are bundled in the header file DanceQ.h. By defining MaxSites and
Q (the maximum number of sites and the local Hilbert space dimension) before including the
file, all classes become predefined and ready for use. A full example using the header file is
given in Appendix D.

We strongly recommend using CMake to compile the code. Once the necessary paths are set
correctly (a simple configuration script is included), building and utilizing DanceQ is straight-
forward. To fully leverage advanced C++ features, such as large-scale sparse MPI operators
provided by Petsc, additional dependencies are required. We provide preconfigured Docker
containers with all necessary software installed for various platforms to simplify the installa-
tion process. This allows for a straightforward setup.

The repository further includes several physical examples and test cases, exploring Lindbla-
dian and Hamiltonian systems likewise. These examples demonstrate how to use the different
frontends and features provided by DanceQ. Once the paths are set correctly—either by edit-
ing the configuration file or using Docker—the examples can be compiled and executed easily.
A detailed list of examples, along with instructions on how to run them, can be found in the
documentation [46].

4.2 Lookup tables

An efficient implementation of our multidimensional search algorithm uses two kinds of lookup
tables. One is used to store the offsets and strides that are computed with Eq. (19) and Eq. (23)

19

https://scipost.org/SciPostPhysCodeb.48
https://www.docker.com/

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

. Both the offsets and strides depend on ni and λi that can not be greater than n ≤ (Q− 1)L.
Therefore, the memory required to store all possible coefficients for all N subsystems is smaller
than Nn2 and fits easily on any hardware.

However, the size of the other type of lookup table scales exponentially with the subsystem
size, and reducing its volume is the motivation behind our work by introducing more subsys-
tems. To recall, each subsystem has a lookup table that defines a canonical order within Pi ,
ignoring the rest of the system: For each subsystem particle number sector ni , the table pro-
vides a one-to-one mapping between subsystem states |σ⃗(i)〉 and an index, indexi(σ⃗(i)), from
zero to DQ(Li , ni) − 1. Note that the system Pi has different particle number sectors where
each has its own zero-based labeling. An example is shown Table 1. The index, together with
the offset and stride, defines the subsystem contribution ci .

The size of the lookup table indexi(σ⃗(i)) scales exponentially with the subsystem size: QLi .
While the overhead coming from this table is manageable and does not hamper performance
for Li ∼ 10, it quickly becomes a bottleneck for matrix-free applications in large eigenvalue
problems. Therefore, in order to break the exponential increase, the system is split into multi-
ple parts, keeping the individual subsystem sizes small. Splitting the system into N = 2 parts,
as proposed by Ref. [7], helps to delay the problem, but it is an unsatisfying approach for
L ≳ 30. In these cases, partitioning the system in more than two subsystems is required to
reduce the memory overhead.

Implementation

We have implemented and tested three approaches to encode the lookup table indexi(σ⃗(i)):

(i) memory-aligned list

(ii) lexicographical order in a tree-based associative map

(iii) combinatorial on-the-fly

The first option uses memory-aligned indices that are accessed using the integer representation
of the state |σ⃗(i)〉 similar to Ref. [7]. For example, we require two bits to encode a single state
|q〉 for q = 0, . . . , 3 with Q = 4. We denote the number of bits necessary to store a single state
by NbitsQ = ceil(log(Q)/ log(2)). The state |3; 2;1; 0〉 with L = 4 spans over eight bits:
(11100100) where two consecutive bits refer to a single qudit state. The bit string encodes the
integer 228 and we, therefore, store the index of the state |3; 2;1; 0〉 at the 228-th position.

The second implementation (ii) might be advantageous in the limit of small filling fractions
n≪ L. A table encoding a system of size L using the (i) requires 2NbitsQ·L entries. However, in
the limit of small fillings, most entries will never be used. By using a lexicographical order that
only includes the valid states, the subsystem length can be chosen significantly bigger than in
the first case.

Lastly, we can simply exploit Algo. 1 to compute the indices on-the-fly without actually
storing the subsystem states. We actually use the algorithm to assign the unique indices to the
subsystem states when tables in form (i) and (ii) are constructed. Again, the precise order is
arbitrary as long as the mapping is one-to-one.

4.3 Performance

20

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

0 20 40 60 80 100 120

L

0.0

0.2

0.4

0.6

0.8

1.0

ti
m

e
in

a
rb

it
ra

ry
u
n
it

N = 2

N = 3

N = 4

N = 5

N = 6

N = 7

Figure 4: Runtime in arbitrary units to enumerate randomly generated trial states
for a system of size L with Q = 2. N refers to the number of subsystems that are
distributed “most” equally. The vertical lines mark the system size where the memory
of the lookup table with size 2ceil(L/N) exceeds the cache, here 4MB, of the processor.
All computations were done using two unsigned integers with 64 bits each for state
representation.

For a given length and filling fraction, the performance of the algorithm depends on the
number of subsystems and their partitioning. To find the optimal choice, we randomly generate
a fixed number of trial states and benchmark the time it takes to retrieve their basis index
following the general recipe implemented in [46]. The number of states is of order 106. We
used an Intel i7-7500U (2.70 GHz) processor with a cache size of 4MB for these benchmarks.

As a first observation, we find that the performance drops significantly when the memory
of the lookup tables exceeds the L3 cache of the processor. This is demonstrated in Fig. 4,
which shows the runtime versus system size for different N . The vertical lines mark the point
where the table exceeds the cache size. Hence, for optimal performance, the required memory
should not exceed this limit.

Given the number of subsystems N , the partitioning with the lowest memory usage is the
one that divides the whole system into the “most” equal parts. At most two different subsystem
sizes Li are present: ceil(L/N) and floor(L/N). This comes with another advantage, as
we can use the same lookup tables for all subsystems of equal length, reducing the memory
consumption further. Hence, we only consider the most equal partitioning of the system for
the rest of the manuscript.

We find that the first container option (memory-aligned list) is in almost all cases the best
choice. This is also true for dilute systems containing only a few particles. Fig. 5 displays the
optimal number of subsystems for the first two lookup table implementations using the uniform
partition. The upper panel refers to the memory-aligned list (i), and the lower panel refers
to the lexicographical order (ii). By an optimal number of subsystems Nopt

Q , we mean that

an equally sized partition with N = Nopt
Q has the lowest runtime for our randomly generated

test setup. We have evaluated the optimal number of subsystems in both cases for fixed filling
fraction f = n

(Q−1)L and length. In both cases, we see a clear trend that larger systems and
larger filling fractions require more subsystems for an ideal performance. We note that the
figure shows some deviations from this trend for larger system sizes for Q > 2.

To understand the scaling of the Nopt
Q with Q, we look into the most prominent case at

half-filling using the memory-aligned list. Fig. 6 displays the Nopt
Q versus L ·NbitsQ. To recall,

21

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

8 24 48 64

L

0.125

0.250

0.375

0.500
f

Q = 2

8 16 24 32

L

Q = 3

8 16 24 32

L

Q = 4

1 2 3 4 5

number of subsystems

8 24 48 64

L

0.125

0.250

0.375

0.500

f

Q = 2

8 16 24 32

L

Q = 3

8 16 24 32

L

Q = 4

2 4 6 8 10

number of subsystems

Figure 5: Optimal number of subsystems for two different implementations of the
lookup tables using the memory-aligned list (left) and a lexicographical order (right).
To determine the optimal Nopt

Q , we have chosen the most equal partition and mea-
sured the time it takes to retrieve indices of randomly generated trial states. The
optimal Nopt

Q has the lowest runtime. L refers to the total system size, and Q to
the local Hilbert space dimension. The filling fraction is defined by the number of
particles in the total system divided by the maximal number of particles possible:
f = n

(Q−1)L . We have not shown a computation for the on-the-fly approach (iii), as
the optimal number of subsystems is simply N = L for all cases. We further find that
option (i) is superior for all filling fractions considered here. All computations were
done using a single unsigned integer with 64 bits for state representation.

NbitsQ = ceil(log(Q)/ log(2)) is the number of bits required to encode a single state of
dimension Q. We find that the optimal number of subsystems scales linearly with L · NbitsQ:

Nopt
Q = ceil

�

mQ(L · NbitsQ) + bQ

�

. (32)

We find good agreement for different values of Q and mQ ∼ 0.05. This can be understood
as an optimal subsystem length L/Nopt

Q such that the table can be stored in the cache:

2
NbitsQ

L

N
opt
Q ≈ 21/mQ for b≪ mQ(L · NbitsQ) . (33)

To summarize, we recommend using the most equal partition such that at most two tables
have to be stored. Eq. (32) can be used to determine the optimal number of subsystems.
However, in practice, the length should be chosen such that the lookup table footprint is smaller
since other data needs to be stored in the L3 cache as well.

22

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

0 50 100 150 200 250 300 350 400

L · NbitsQ

1

5

9

13

17

21

25

n
u
m

b
e
r

o
f

su
b
sy

st
e
m

s
N

Q = 2, NbitsQ = 1, (m2, b2) = (0.066, 0.178)

Q = 3, NbitsQ = 2, (m3, b3) = (0.049, 0.823)

Q = 4, NbitsQ = 2, (m4, b4) = (0.050, 1.453)

Q = 5, NbitsQ = 3, (m5, b5) = (0.040, 1.794)

Q = 6, NbitsQ = 3, (m6, b6) = (0.039, 2.332)

Figure 6: Optimal number of subsystems for different Q at half filling
(n = L(Q − 1)/2) versus LNbitsQ. For each system size, we use our test setup
with randomly generated trial states and identify the optimal system size plotted on
the y-axis. We find a linear scaling and fit Nopt

Q = mQ(L · NbitsQ + bQ) to extract
the optimal scaling. NbitsQ = ceil(log(Q)/ log(2)) refers to the number of bits
required to encode a single site with local Hilbert space dimension Q.

4.4 Matrix-free multiplication

Many algorithms in computational quantum many-body physics rely solely on matrix-vector
multiplications to build, for example, a Krylov subspace which can used to perform real-time
evolution, to calculate equilibrium properties via canonical typicality, or to compute ground
states and excitations (e.g., by deflation techniques [58]), or other eigenvectors using spec-
tral transformations [64–66]. Krylov space methods are particularly powerful and frequently
applied to many physical problems due to the sparseness of the Hamiltonian as it reduces the
complexity from a cubic for a full diagonalization to an often linear scaling with the Hilbert
space dimension (which itself remains of course exponential in L).

The bottleneck for exact methods is usually the memory requirement to store the sparse
Hamiltonian matrix, which scales with the Hilbert space dimension times the number of off-
diagonal matrix elements per row (which is typical of order L in the case of nearest-neighbor
interactions) for sparse matrix-vector multiplication. Therefore, to reduce the memory further,
state-of-the-art computations [31–33,38,67–69] do not store this matrix and instead compute
the action of its elements on the input vector on the fly in a massively parallel way. However, to
ensure fast computations, each worker process must know the basis states and their associated
indices. This is the main contribution of our algorithm, as it allows a memory-efficient way to
perform this type of bookkeeping.

To understand the scaling of the subsystem size within the full matrix-free multiplica-
tion [46], we monitored the time it take to perform one such matrix-vector operation. While
the performance depended crucially on N and the available cache in the last subsection, where
we only focused on the lookup, we do not observe this behavior in this case. In fact, we find
that the time depends only slightly on the number of subsystems, and the best performance was
achieved by using a single “subsystem” of size L (N = 1) – if it fits in the RAM. The dependence
of the runtime for a single matrix-free matrix-multiplication is shown in Fig. 7. We interpret
this finding to indicate strong cache interference between data required for the actual multi-
plications of matrix elements on the vector and data for lookup tables, which means that the

23

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

1 2 3 4 5 6

N

0.5

1.0

1.5

2.0

2.5

3.0

t
im

e
in

a
r
b
it

r
a
r
y

u
n
it

H
il

b
e
r
t
s
p
a
c
e

d
im

e
n
s
io

n

L = 64, n = 5

L = 48, n = 6

L = 32, n = 8

L = 24, n = 12

optimal N

Figure 7: Runtime for a single matrix-free matrix-vector multiplication (isotropic
Heisenberg chain) divided by the dimensionality of the problem versus the number
of subsystems. Computations are carried out with the two MPI threads. The red
crosses mark the optimal number of subsystems, as stated in Eq. (34) .

lookup and the retrieval of the indices play only a secondary role during the full matrix-vector
multiplication and other operations that take place have to be considered. For example, the
output wave function (which usually fills up the whole RAM) is constantly edited, and states
have to be incremented and manipulated throughout the process. Therefore, to obtain the
best performance, we recommend choosing N small but without consuming any meaningful
memory. In other words, the memory footprint of each worker process should be the guiding
principle when choosing N since the computing time in real-world applications only depends
weakly on N .

The memory-core ratio is of the order of 4GiB on modern platforms, and we will use a 4 GB
limit per core as an example for the following discussion. Since memory is the constraining part
for Krylov space techniques we do not want to block any significant amount of it. However,
storing the lookup table for a single subsystem N = 1 blocks the available memory, which
should be used by the wave function and is quickly exhausted (L = 27 for Q = 2). In Fig. 8,
we show the memory required by the lookup table. In MPI-based programs in this scenario,
each worker process is in charge of 4 GiB and has to store its own table. Therefore, it is not
possible that the lookup table takes more than 4 GiB. This is indicated by the red-shaded area
where more subsystems are required to reduce the memory consumption. Blue (yellow) color
refers to large (exponentially small) fractions of the 4GiB limits used by the table. The default
setting of our code and our recommendation is 512kiB, which refers to a subsystem length of
Li = 16 for Q = 2 [46]:

Nopt
Q = ceil

�NbitsQ · L
16

�

. (34)

This choice is also in agreement with Eq. (32) (bQ = 0) and the linear scaling from Fig. 6 with
m2 ∼ 1/16. Note that, at most, two lookup tables are required for the most equal partition.
Red crosses in Fig. 7 mark the optimal number of subsystems for the respective system sizes
tested.

24

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

1 2 3 4 5 6 7

N

16
24
32
40
48
56
64
72
80
88
96

104
112
120
128

L

memory exceeds
the 4GiB limit

10−9 10−7 10−5 10−2
default
512KB

memory per
core limit

required memory in GiB

Figure 8: The figure displays the fraction of memory used to store the largest lookup
table to the available memory per processor, which we set to 4 GiB here for different
system sizes L and number of equally sized subsystems N (Q = 2). The blue (yellow)
color indicates that a large (exponentially small) portion is used by the lookup table.
The red-shaded area indicates system sizes that require more subsystems in order to
fit the table within the memory of the processor. The bottleneck of exact diagonaliza-
tion is usually memory, and the fraction of memory associated with the table should
be chosen rather small. For each system size L, we have marked the optimal number
of subsystems with a black box where the memory required by the lookup table does
not exceed our default setting of 512kiB [46]. Note that the memory consumption
of the table is independent of the particle sector.

5 Conclusion

We presented an solution to efficiently deal with number-conserving systems in very large-
scale, massively parallel calculations where the available memory per core limits space avail-
able for lookup tables to map basis states to their index. While an on-the-fly algorithm Algo. 1
exists as the extreme limit with negligible memory requirements, it is the slowest solution. The
traditional approach [7] using two subsystems is much faster but requires too much memory
for system sizes coming within reach on exascale machines. Our general divide-and-conquer
algorithm interpolates between these two limits and provides an optimal balance between
computational cost and available memory to overcome these limitations.

We have implemented this algorithm in a general, state-of-the-art, and header-only C++20
library available at Ref. [46]. The data used in the figures is publicly accessible at Ref. [70].
The code is user-friendly and allows the exploitation of the full power of large-scale comput-
ing facilities, making ground-state searches and time evolution for large systems possible. By
combining several nodes via MPI, our implementation is capable of computing ground states
for systems containing 46 spins (Q = 2) within the zero-magnetization sector. The required
memory to store the necessary two wave functions is about 120TiB which can be provided by
∼ 256 nodes with 512GiB each. Similar to SPINPACK [34] and XDiag [35,38], the forthcom-
ing version of DanceQ [45] will support the use and automatic detection of spatial symmetries
following the ansatz developed in Ref. [37]. This makes larger systems accessible as the com-
plexity is typically reduced by the system size, requiring only ∼ 6 nodes in the example above.

While the focus of this paper and the accompanying code is on quantum magnetism, it is
applicable to other problems of many Fermions or Bosons with conserved total particle number.

25

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

The problem of efficiently enumerating states or sequences in lexicographical order extends
beyond physics and is important in various areas of computer science [51,52].

We note in closing that our method is formulated for L identical qudits with Q states per
site. At the expense of additional bookkeeping, it is straightforward to generalize our approach
to different Q for each site, which is relevant for systems of mixed spin S or, for example, Bose-
Fermi mixtures [55].

Acknowledgements

This work was financially supported by the Deutsche Forschungsgemeinschaft through the clus-
ter of excellence ML4Q (EXC 2004, project-id 390534769). DJL acknowledges support from
the QuantERA II Programme that has received funding from the European Union’s Horizon
2020 research innovation programme (GA 101017733), and from the Deutsche Forschungs-
gemeinschaft through the project DQUANT (project-id 499347025). We further acknowledge
support by the Deutsche Forschungsgemeinschaft through CRC 1639 NuMeriQS (project-id
511713970). RS acknowledges the AFOSR Grant No. FA9550-20-1-0235.

A Hilbert space dimension

We consider a tensor product Hilbert space of local Q-dimensional spaces, subject to the con-
straint that the sum of local excitations n is fixed.

For Q = 2, the Hilbert space dimension of a sector n= 0, . . . , L can be derived combinato-
rially and is well known to be determined by the binomial coefficient:

D2(L, n) =
�

L
n

�

. (A.1)

However, determining the dimension of each sector for larger local dimension Q is more
involved. It is related to the probability of scoring a fixed sum in the throw of L dices with Q
faces, cf. p. 284, problem 18 in Ref. [71]. In the context of Hilbert space dimensions, one of
the early applications can be found in Refs. [54,57].

Here, we provide an elementary derivation of this closed-form equation. We approach this
problem by defining an equal superposition of all possible computational states

|Ψ〉=
L
⊗

i=1

Q−1
∑

j=0

| j〉

!

. (A.2)

Now, to determine the dimension of a sector with a certain magnetization n, we need to identify
all states exhibiting the correct magnetization. This problem is equivalent to determining the
coefficient of xn of the polynomial f (x) =

�

1+ x + · · ·+ xQ−1
�L

:

DQ(L, n) = coefxn

�

�

1+ x + · · ·+ xQ−1
�L�

. (A.3)

Here, we identified the state |k〉1 with xk. Each computational state exhibiting the correct
magnetization contributes to the coefficient of xn.

We evaluate the polynomial using the finite geometric sum

f (x) =

�Q−1
∑

i=0

x i

�L

=

�

xQ − 1
x − 1

�L

=

�

xQ − 1
�L

(x − 1)L
. (A.4)

26

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

Then, the denominator is expanded using its Taylor series around x = 0:

(x − 1)−L = (−1)−L
∞
∑

k=0

1
k!

�k−1
∏

s=0

(L + s)

�

xk = (−1)−L
∞
∑

k=0

�

L − 1+ k
L − 1

�

xk . (A.5)

and the nominator is evaluated using the binomial coefficients:

�

xQ − 1
�L
=

L
∑

k=0

�

L
k

�

xQk(−1)L−k. (A.6)

To obtain the dimension of the sector, Eq. (A.5) and Eq. (A.6) are multiplied and we evaluate
the coefficient of xn:

DQ(L, n) =
⌊n/Q⌋
∑

k=0

(−1)k
�

L
k

��

L − 1+ n−Qk
L − 1

�

. (A.7)

⌊⌋ is the lower Gauss bracket.

B Pseudo code

This section presents the pseudo-code of the most important functions (i), (ii), and (iii) from
Sec. 2.2. Our DanceQ library initiates the lookup tables that provide the index within a particle
number sector and all necessary offsets and strides from Eq. (19) and Eq. (23) . The following
functions are implemented by an underlying State class:

• get_n (|σ⃗〉, k):
Returns the number of particles in the subsystem Pk.

• get_minimal_state (l, n):
Returns the state with index 0 for a system with l sites and n particles. It has to be
consistent with the lookup tables.

• is_maximal (|σ⃗〉, k):
Returns True if the subsystem state on Pk is the last state for its particle number sector
in P. It has to be consistent with the lookup tables.

• increment_local (|σ⃗〉, k):
Returns the next state within the same particle number sector of |σ⃗(k)〉 on subsystem Pk
according to the lookup table.

Note that all functions have to be consistent with the chosen lookup table. A possible imple-
mentation to derive lookup tables and the required functions is as follows: We iterate from
the “right” side to the “left” side of the respective subsystem. If the local state at site i is not
maximal (̸= |Q−1〉) and the number of excitations nprev on previous sites is greater than one,
we can increase the state at site i and set the previous sites to the right of i to its minimal state
defined by nprev−1. This is obtained by setting the remaining excitations nprev−1 as much to
the “right” as possible.

We further defined a “container class” that is in charge of the lookup table.

• get_local_index (|σ⃗〉, k):
Returns the subsystem index for subsystem Pk: indexk(σ⃗(k)).

27

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

• get_local_state (index, k):
Returns the subsystem |σ⃗(k)〉 on subsystem Pk:

index= indexk(σ⃗
(k)) = get_local_index (|σ⃗〉, k) .

This is the reverse function of the previous one.

Algorithm 2: Function (i): get_index
Data: |σ⃗〉
index= 0 /* initializing variables */
λ= 0
for 0≤ k < N do

nk = get_n(|σ⃗〉, k) /* local particle number in Pk */
ik = get_local_index(|σ⃗〉, k) /* index from the lookup table */
ck = offsetk(nk,λ) + ik · stridek(nk,λ) /* contribution of Pk as defined in
Eq. (13) */
index= index+ ck
λ= λ+ nk

end
return index;

C Sparse tensor storage

A core module of the DanceQ library is the Operator class, which provides an easy interface
to handle arbitrary tensor products defined on a system consisting of L sites with a local Hilbert
space dimension Q. Besides handling and organizing any input, it allows for a highly optimized
on-the-fly matrix-vector multiplication without storing the exponentially large matrix. For op-
timal performance, the Operator class employs a similar divide-and-conquer approach. This
involves merging several local terms that act on the same sites, a strategy that enhances effi-
ciency and reduces computational complexity. In particular, we identify subclusters of Ntensor
sites of the system and merge all local operators fully supported in this subcluster into a single
sparse matrix of size QNtensor .

Consider for example a one-dimensional spin chain of length L = 30 (we use periodic
boundary conditions where we identify site 30 refers site 0):

H =
29
∑

i=0

�

S x
i S x

i+1 + S y
i S y

i+1 + Sz
i Sz

i+1

�

+
29
∑

i=0

Sz
i . (C.1)

To apply the Hamiltonian to a product state, we have to execute all 4 · 30 local operators. In
order to reduce this complexity that scales with L, we assign three overlapping subclusters of
size Ntensor = 11:

C0 = {0, . . . , 10}, C1 = {10, . . . , 20}, C2 = {0,20, . . . , 29} .

Note that the subclusters need to overlap to encompass all terms. This allows us only to
store three sparse matrices Si of size 211, each containing all operators fully supported on the
individual clusters Ci . For example, all terms that act solely on C0,

HC0
=

9
∑

i=0

�

S x
i S x

i+1 + S y
i S y

i+1 + Sz
i Sz

i+1

�

+
10
∑

i=0

Sz
i (C.2)

28

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

Algorithm 3: Function (ii): increment
Data: |σ⃗〉
λ= 0
Γ = 0
for 1≤ j ≤ N do

k = N − j /* iterate backwards through all subsystems starting with the
last */

nk = get_n(|σ⃗〉, k)
if not is_maximal(|σ⃗〉, k) then /* increase state while persevering the
particle number nk */
|γ⃗(k)〉= increment_local (|σ⃗〉, k) /* increase the state |Ψ〉 locally on

Pk within the sector nk */
|γ⃗(k+1,...,N−1)〉= get_minimal_state (Γ ,λ) /* minimal state on Pk+1 to

PN−1 with length Γ and λ particles */
|γ⃗〉= |σ⃗(0,...,k−1)〉

⊗

|γ⃗(k)〉
⊗

|γ⃗(k+1,...,N−1)〉
return |γ⃗〉

else if λ > 0 and nk < (Q−1)Lk then /* increase state particle number in Pk

*/
|γ⃗(k)〉= get_minimal_state (Lk, nk + 1) /* get the minimal state on Pk

with length Lk and nk + 1 particles */
|γ⃗(k+1,...,N−1)〉= get_minimal_state (Γ ,λ− 1) /* minimal state on Pk+1

to PN−1 with length Γ and λ− 1 particles */
|γ⃗〉= |σ⃗(0,...,k−1)〉

⊗

|γ⃗(k)〉
⊗

|γ⃗(k+1,...,N−1)〉
return |γ⃗〉

end
Γ = Γ + Lk
λ= λ+ nk

end
return get_minimal_state (L, n) /* the input state is maximal; return the
minimal state */

Algorithm 4: Function (iii): get_state
Data: index
λ= 0
Γ = L
for 0≤ k < N − 1 do

Determine nk s.t. offsetk (nk,λ)≤ index< offsetk (nk + 1,λ) /* determine the
correct particle number on Pk */
index= index− offsetk (nk,λ)
ik = index/stridek (nk,λk) /* determine the local index in the particle
number sector nk */
|σ⃗(k)〉= get_local_state (ik, k) /* reverse lookup table */
index= index− ik · stridek (nk,λk)
λ= λ+ nk

end
|σ⃗(N−1)〉= get_local_state (index, k) /* last subsystem */
|σ⃗〉=

⊗

k |σ⃗(k)〉
return |σ⃗〉

29

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

are compressed into S0. Thus, applying the large tensor matrix reduces the complexity of
iterating over 4 ·30 local operators to only three operators resulting in less state manipulations
and computational overhead. Despite the enhanced dimension of the matrices Si compared
to the two-body terms in Eq. (C.1) , it is bounded by Ntensor and can be chosen such it easily
fits in the cache of the processor. We have chosen the default such that the dimension does
not exceed QNtensor = 2048.

Now, given an input stateψ, we can extract the corresponding columnindex of the sparse
matrix for a given cluster Ci by:

columnindex=
|Ck|−1
∑

k=0

Qkψ[k] . (C.3)

In our implementation, this index points directly to the memory-aligned coefficients and ele-
ments of Si . To further enhance the computation, the class works with statemasks which are
stored within the sparse matrix. Instead of storing the sparse matrix of size QNtensor ×QNtensor ,
we directly store each column of this matrix as a sparse vector.

While the above description refers to only nearest-neighbor operators acting on two sites,
its generalization is straightforward and implemented in the class. Note that the choice of
subclusters does not correspond the partition of our multidimensional search algorithm.

To apply a column of the cluster-local operator to an element of the input vector (with a
corresponding basis state), we effectively iterate over all configurations on the complement of
the cluster for each nonzero element of the sparse matrix to calculate the contributions to the
result vector. The bookkeeping in the innermost loop is performed using cheap bitwise logical
operations.

D Example code

This section presents a brief example demonstrating how to compute the ground state and
first excited state of a spin chain in a tilted field, along with the magnetization measurement
at the first site. The code utilizes MPI and our native Lanczos implementation. The code
prints the energies Ek together with their expectation value 〈Ψk |O |Ψk 〉. The Hamiltonian
and observable are defined as follows:

H =
L−1
∑

k=0

1
2

�

S+k S−k+1 + S−k S+k+1

�

+ Sz
kSz

k+1 + k Sz
k (D.1)

O = Sz
0 . (D.2)

#include <iostream >
#include <mpi.h>

/* Eigen is required to diagonalize the projection onto the
Krylov subspace */

#include <Eigen/Dense >
#include <Eigen/Eigenvalues >

/* Maximal system size */
#define MaxSites 64

/* Hilbert space dimension */
#define Q 2

30

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

/* ScalarType */
#define ScalarType double

#include "DanceQ.h"
using namespace danceq;

int main(int argc , char *argv []) {

/* Rank number */
int myrank = 0;

/* Initializes MPI */
MPI_Init (&argc , &argv);

/* Number of MPI ranks */
int world_size;
MPI_Comm_size(MPI_COMM_WORLD , &world_size);

/* Rank number */
MPI_Comm_rank(MPI_COMM_WORLD , &myrank);

/* Number of particles */
uint64_t n = 14;

/* System size */
uint64_t L = 28;

/* number of states */
uint64_t number_of_states = 4;

/* Hamiltonian */
Hamiltonian_U1 H(L,n);

/* XXX -Heisenberg model with open boundary conditions and a
tilted field */
for(uint64_t i = 0; i < L-1; i++){

H.add_operator (.5, {i,(i+1)%L}, {"S+","S-"});
H.add_operator (.5, {i,(i+1)%L}, {"S-","S+"});
H.add_operator (1., {i,(i+1)%L}, {"Sz","Sz"});
H.add_operator(static_cast <double >(i), {i}, {"Sz"});

}

/* Information */
H.info();

/* Observable */
Hamiltonian_U1 O(L,n);

/* Operator measuring the magnetization of the first site
*/
O.add_operator (1., {0}, {"Sz"});

auto O_matrix = O.create_ShellMatrix ();

std::vector <Vector > states;

31

https://scipost.org/SciPostPhysCodeb.48

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

auto data = lanczos(H, number_of_states , &states /* returns
eigen states if this is not nullptr */);
for(uint64_t s_for = 0UL; s_for < data.size(); s_for ++){

auto obs = O_matrix.get_expectation_value(states[s_for
]);

if(myrank == 0){
std::cout << "[main] - E_" << s_for << " = " <<

data[s_for] << ", O_" << s_for << " = " << obs << std::endl;
}

}

/* Finalizes MPI */
MPI_Finalize ();

return 0;
}

References

[1] H. Bethe, Zur Theorie der Metalle, Zeitschrift für Physik 71(3), 205 (1931),
doi:10.1007/BF01341708.

[2] A. J. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303(1), 2
(2003), doi:https://doi.org/10.1016/S0003-4916(02)00018-0.

[3] A. J. Kitaev, Anyons in an exactly solved model and beyond, Annals of Physics 321(1), 2
(2006), doi:https://doi.org/10.1016/j.aop.2005.10.005.

[4] A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg, Dynamical mean-field theory of
strongly correlated fermion systems and the limit of infinite dimensions, Reviews of Modern
Physics 68(1), 13 (1996), doi:10.1103/RevModPhys.68.13.

[5] T. Giamarchi, Quantum Physics in One Dimension, Oxford University Press, ISBN
9780198525004, doi:10.1093/acprof:oso/9780198525004.001.0001 (2003).

[6] M. Hermele, M. P. A. Fisher and L. Balents, Pyrochlore photons: The U(1) spin liq-
uid in a S = 1

2 three-dimensional frustrated magnet, Phys. Rev. B 69, 064404 (2004),
doi:10.1103/PhysRevB.69.064404.

[7] H. Q. Lin, Exact diagonalization of quantum-spin models, Phys. Rev. B 42, 6561 (1990),
doi:10.1103/PhysRevB.42.6561.

[8] A. W. Sandvik and J. Kurkijärvi, Quantum Monte Carlo simulation method for spin systems,
Phys. Rev. B 43, 5950 (1991), doi:10.1103/PhysRevB.43.5950.

[9] S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev.
Lett. 69, 2863 (1992), doi:10.1103/PhysRevLett.69.2863.

[10] U. Schollwöck, The density-matrix renormalization group in the age of matrix product
states, Annals of Physics 326(1), 96 (2011), doi:10.1016/j.aop.2010.09.012.

[11] C. Lanczos, An iteration method for the solution of the eigenvalue problem of lin-
ear differential and integral operators, J. Res. Natl. Bur. Stand. B 45, 255 (1950),
doi:10.6028/jres.045.026.

32

https://scipost.org/SciPostPhysCodeb.48
https://doi.org/10.1007/BF01341708
https://doi.org/https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1093/acprof:oso/9780198525004.001.0001
https://doi.org/10.1103/PhysRevB.69.064404
https://doi.org/10.1103/PhysRevB.42.6561
https://doi.org/10.1103/PhysRevB.43.5950
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.6028/jres.045.026

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

[12] W. E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue
problem, Quarterly of Applied Mathematics 9(1), 17 (1951).

[13] A. S. Householder, Unitary triangularization of a nonsymmetric matrix, J. ACM 5(4),
339–342 (1958), doi:10.1145/320941.320947.

[14] G. H. Golub and H. A. van der Vorst, Eigenvalue computation in the 20th cen-
tury, Journal of Computational and Applied Mathematics 123(1), 35 (2000),
doi:https://doi.org/10.1016/S0377-0427(00)00413-1.

[15] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equation of
State Calculations by Fast Computing Machines, The Journal of Chemical Physics 21(6),
1087 (1953), doi:10.1063/1.1699114.

[16] E. Fermi, J. R. Pasta and S. M. Ulam, Studies of nonlinear problems I, Tech. rep., Los
Alamos Report LA-1940, doi:10.2172/4376203 (1955).

[17] B. J. Alder and T. E. Wainwright, Studies in Molecular Dynamics. I. General Method, The
Journal of Chemical Physics 31(2), 459 (1959), doi:10.1063/1.1730376.

[18] E. N. Lorenz, Deterministic nonperiodic flow, Journal of Atmospheric Sciences 20(2), 130
(1963), doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

[19] W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications,
Biometrika 57(1), 97 (1970), doi:10.1093/biomet/57.1.97.

[20] H. O. Pritchard, F. H. Sumner and G. Gee, The application of electronic digital computers
to molecular orbital problems I. The calculation of bond lengths in aromatic hydrocarbons,
Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
226(1164), 128 (1954), doi:10.1098/rspa.1954.0243.

[21] R. Orbach, Antiferromagnetic Magnon Dispersion Law and Bloch Wall Ener-
gies in Ferromagnets and Antiferromagnets, Phys. Rev. 115, 1181 (1959),
doi:10.1103/PhysRev.115.1181.

[22] L. F. Mattheiss, Antiferromagnetic linear chain, Phys. Rev. 123, 1209 (1961),
doi:10.1103/PhysRev.123.1209.

[23] G. Dresselhaus, Ferro- and Antiferromagnetism in a Cubic Cluster of Spins, Phys. Rev. 126,
1664 (1962), doi:10.1103/PhysRev.126.1664.

[24] J. C. Bonner and M. E. Fisher, The entropy of an antiferromagnet in a magnetic field, Pro-
ceedings of the Physical Society 80(2), 508 (1962), doi:10.1088/0370-1328/80/2/318.

[25] J. C. Bonner and M. E. Fisher, Linear magnetic chains with anisotropic coupling, Phys.
Rev. 135, A640 (1964), doi:10.1103/PhysRev.135.A640.

[26] C. Kawabata, Statistical Mechanics of the Finite Heisenberg Model. II, Journal of the
Physical Society of Japan 28(4), 861 (1970), doi:10.1143/JPSJ.28.861.

[27] V. Mubayi, C. K. Majumdar and K. Krishan, Distribution of Zeros of the Partition Func-
tion for the Finite Two-Dimensional Heisenberg Model, Phys. Rev. B 8, 3305 (1973),
doi:10.1103/PhysRevB.8.3305.

[28] J. Oitmaa and D. D. Betts, The ground state of two quantum models of magnetism, Cana-
dian Journal of Physics 56(7), 897 (1978), doi:10.1139/p78-120.

33

https://scipost.org/SciPostPhysCodeb.48
https://doi.org/10.1145/320941.320947
https://doi.org/https://doi.org/10.1016/S0377-0427(00)00413-1
https://doi.org/10.1063/1.1699114
https://doi.org/10.2172/4376203
https://doi.org/10.1063/1.1730376
https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1098/rspa.1954.0243
https://doi.org/10.1103/PhysRev.115.1181
https://doi.org/10.1103/PhysRev.123.1209
https://doi.org/10.1103/PhysRev.126.1664
https://doi.org/10.1088/0370-1328/80/2/318
https://doi.org/10.1103/PhysRev.135.A640
https://doi.org/10.1143/JPSJ.28.861
https://doi.org/10.1103/PhysRevB.8.3305
https://doi.org/10.1139/p78-120

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

[29] G. E. Moore, Cramming more components onto integrated circuits, Electronics Magazine
38 (1965).

[30] G. E. Moore, Cramming more components onto integrated circuits, Reprinted from Elec-
tronics, volume 38, number 8, April 19, 1965, pp.114 ff., IEEE Solid-State Circuits Society
Newsletter 11(3), 33 (2006), doi:10.1109/N-SSC.2006.4785860.

[31] A. Wietek, Topological states of matter in frustrated quantum magnetism, Universität
Innsbruck, Ph.D. thesis (2017).

[32] A. M. Läuchli, J. Sudan and R. Moessner, S = 1
2 kagome Heisenberg antiferromagnet

revisited, Phys. Rev. B 100, 155142 (2019), doi:10.1103/PhysRevB.100.155142.

[33] R. Schäfer, Magnetic Frustration in Three Dimensions, TU Dresden, Ph.D. thesis (2022).

[34] Joerg Schulenburg, Spinpack, https://www-e.uni-magdeburg.de/jschulen/spin/
(2016).

[35] Alexander Wietek, XDiag, https://github.com/awietek/xdiag (2024).

[36] A. Weiße, Divide and conquer the Hilbert space of translation-symmetric spin systems, Phys.
Rev. E 87, 043305 (2013), doi:10.1103/PhysRevE.87.043305.

[37] R. Schäfer, I. Hagymási, R. Moessner and D. J. Luitz, Pyrochlore S = 1
2 Heisen-

berg antiferromagnet at finite temperature, Phys. Rev. B 102, 054408 (2020),
doi:10.1103/PhysRevB.102.054408.

[38] A. Wietek and A. M. Läuchli, Sublattice coding algorithm and distributed memory paral-
lelization for large-scale exact diagonalizations of quantum many-body systems, Phys. Rev.
E 98, 033309 (2018), doi:10.1103/PhysRevE.98.033309.

[39] J. Hubbard and B. H. Flowers, Electron correlations in narrow energy bands, Proceedings
of the Royal Society of London. Series A. Mathematical and Physical Sciences 276(1365),
238 (1963), doi:10.1098/rspa.1963.0204.

[40] H. Lin, J. Gubernatis, H. Gould and J. Tobochnik, Exact Diagonalization Methods for
Quantum Systems, Computer in Physics 7(4), 400 (1993), doi:10.1063/1.4823192.

[41] M. Sharma and M. Ahsan, Organization of the Hilbert space for exact diagonal-
ization of Hubbard model, Computer Physics Communications 193, 19 (2015),
doi:https://doi.org/10.1016/j.cpc.2015.03.014.

[42] E. R. Gagliano, E. Dagotto, A. Moreo and F. C. Alcaraz, Correlation functions of the anti-
ferromagnetic Heisenberg model using a modified Lanczos method, Phys. Rev. B 34, 1677
(1986), doi:10.1103/PhysRevB.34.1677.

[43] J. M. Zhang and R. X. Dong, Exact diagonalization: the Bose–Hubbard model as
an example, European Journal of Physics 31(3), 591 (2010), doi:10.1088/0143-
0807/31/3/016.

[44] M. Kawamura, K. Yoshimi, T. Misawa, Y. Yamaji, S. Todo and N. Kawashima, Quan-
tum lattice model solver Hφ, Computer Physics Communications 217, 180 (2017),
doi:10.1016/j.cpc.2017.04.006.

[45] Source code of DanceQ, https://gitlab.com/DanceQ/danceq.

[46] Documentation of DanceQ, https://DanceQ.gitlab.io/danceq.

34

https://scipost.org/SciPostPhysCodeb.48
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1103/PhysRevB.100.155142
https://www-e.uni-magdeburg.de/jschulen/spin/
https://github.com/awietek/xdiag
https://doi.org/10.1103/PhysRevE.87.043305
https://doi.org/10.1103/PhysRevB.102.054408
https://doi.org/10.1103/PhysRevE.98.033309
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1063/1.4823192
https://doi.org/https://doi.org/10.1016/j.cpc.2015.03.014
https://doi.org/10.1103/PhysRevB.34.1677
https://doi.org/10.1088/0143-0807/31/3/016
https://doi.org/10.1088/0143-0807/31/3/016
https://doi.org/10.1016/j.cpc.2017.04.006
https://gitlab.com/DanceQ/danceq
https://DanceQ.gitlab.io/danceq

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

[47] S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman,
E. Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, J. Faibussowitsch et al., PETSc/TAO
users manual, Tech. Rep. ANL-21/39 - Revision 3.21, Argonne National Laboratory,
doi:10.2172/2205494 (2024).

[48] S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E. M.
Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, J. Faibussowitsch et al., PETSc Web page,
https://petsc.org/ (2024).

[49] V. Hernández, J. E. Román and V. Vidal, Slepc: Scalable library for eigenvalue prob-
lem computations, In J. M. L. M. Palma, A. A. Sousa, J. Dongarra and V. Hernán-
dez, eds., High Performance Computing for Computational Science — VECPAR 2002, pp.
377–391. Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN 978-3-540-36569-3,
doi:https://doi.org/10.1007/3-540-36569-9_25 (2003).

[50] V. Hernandez, J. E. Roman and V. Vidal, Slepc: A scalable and flexible toolkit for the
solution of eigenvalue problems, ACM Trans. Math. Softw. 31(3), 351–362 (2005),
doi:10.1145/1089014.1089019.

[51] J. P. M. Schalkwijk, An algorithm for source coding, IEEE Transactions on Information
Theory 18(3), 395 (1972), doi:10.1109/TIT.1972.1054832.

[52] T. M. Cover, Enumerative source encoding, IEEE Transactions on Information Theory
19(1), 73 (1973), doi:10.1109/TIT.1973.1054929.

[53] J. Schnack, P. Hage and H.-J. Schmidt, Efficient implementation of the Lanczos
method for magnetic systems, Journal of Computational Physics 227(9), 4512 (2008),
doi:10.1016/j.jcp.2008.01.027.

[54] K. Bärwinkel, H. J. Schmidt and J. Schnack, Structure and relevant dimension of the
Heisenberg model and applications to spin rings, Journal of Magnetism and Magnetic
Materials 212(1), 240 (2000), doi:10.1016/S0304-8853(99)00579-X.

[55] A. I. Streltsov, O. E. Alon and L. S. Cederbaum, General mapping for bosonic
and fermionic operators in Fock space, Phys. Rev. A 81, 022124 (2010),
doi:10.1103/PhysRevA.81.022124.

[56] A. Szabados, P. Jeszenszki and P. R. Surján, Efficient iterative diagonalization of the
Bose–Hubbard model for ultracold bosons in a periodic optical trap, Chemical Physics 401,
208 (2012), doi:https://doi.org/10.1016/j.chemphys.2011.10.003, Recent advances in
electron correlation methods and applications.

[57] L. Maciej, S. Anna, A. Veronica, D. Bogdan, S. Aditi and S. Ujjwal, Ultracold atomic gases
in optical lattices: mimicking condensed matter physics and beyond, Advances in Physics
56(2), 243 (2007), doi:10.1080/00018730701223200.

[58] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Society for Industrial and
Applied Mathematics, doi:10.1137/1.9781611970739 (2011).

[59] F. Gray, Pulse code communication., United States Patent Number 2632058. (1953).

[60] O. Di Matteo, A. McCoy, P. Gysbers, T. Miyagi, R. M. Woloshyn and P. Navrátil, Im-
proving Hamiltonian encodings with the Gray code, Phys. Rev. A 103, 042405 (2021),
doi:10.1103/PhysRevA.103.042405.

[61] D. H. Lehmer, Teaching combinatorial tricks to a computer (1960).

35

https://scipost.org/SciPostPhysCodeb.48
https://doi.org/10.2172/2205494
https://petsc.org/
https://doi.org/https://doi.org/10.1007/3-540-36569-9_25
https://doi.org/10.1145/1089014.1089019
https://doi.org/10.1109/TIT.1972.1054832
https://doi.org/10.1109/TIT.1973.1054929
https://doi.org/10.1016/j.jcp.2008.01.027
https://doi.org/10.1016/S0304-8853(99)00579-X
https://doi.org/10.1103/PhysRevA.81.022124
https://doi.org/https://doi.org/10.1016/j.chemphys.2011.10.003
https://doi.org/10.1080/00018730701223200
https://doi.org/10.1137/1.9781611970739
https://doi.org/10.1103/PhysRevA.103.042405

SciPost Physics Codebases SciPost Phys. Codebases 48 (2025)

[62] M. Fishman, S. R. White and E. M. Stoudenmire, The ITensor Software Li-
brary for Tensor Network Calculations, SciPost Phys. Codebases p. 4 (2022),
doi:10.21468/SciPostPhysCodeb.4.

[63] M. Fishman, S. R. White and E. M. Stoudenmire, Codebase release 0.3 for ITensor, SciPost
Phys. Codebases pp. 4–r0.3 (2022), doi:10.21468/SciPostPhysCodeb.4-r0.3.

[64] D. J. Luitz, N. Laflorencie and F. Alet, Many-body localization edge in
the random-field Heisenberg chain, Phys. Rev. B 91(8), 081103 (2015),
doi:10.1103/PhysRevB.91.081103.

[65] P. Sierant, M. Lewenstein and J. Zakrzewski, Polynomially Filtered Exact Diagonalization
Approach to Many-Body Localization, Physical Review Letters 125(15), 156601 (2020),
doi:10.1103/PhysRevLett.125.156601.

[66] D. J. Luitz, Polynomial filter diagonalization of large Floquet unitary operators, SciPost
Phys. 11(2), 021 (2021), doi:10.21468/SciPostPhys.11.2.021.

[67] K. De Raedt, K. Michielsen, H. De Raedt, B. Trieu, G. Arnold, M. Richter,
T. Lippert, H. Watanabe and N. Ito, Massively parallel quantum com-
puter simulator, Computer Physics Communications 176(2), 121 (2007),
doi:https://doi.org/10.1016/j.cpc.2006.08.007.

[68] H. De Raedt, F. Jin, D. Willsch, M. Willsch, N. Yoshioka, N. Ito, S. Yuan and K. Michielsen,
Massively parallel quantum computer simulator, eleven years later, Computer Physics Com-
munications 237, 47 (2019), doi:https://doi.org/10.1016/j.cpc.2018.11.005.

[69] R. Schäfer, B. Placke, O. Benton and R. Moessner, Abundance of Hard-Hexagon Crys-
tals in the Quantum Pyrochlore Antiferromagnet, Phys. Rev. Lett. 131, 096702 (2023),
doi:10.1103/PhysRevLett.131.096702.

[70] R. Schäfer and D. J. Luitz, Data for "DanceQ: High-performance library for number con-
serving bases" [arXiv:2407.14591], doi:10.5281/zenodo.12798598 (2024).

[71] W. Feller, An Introduction to Probability Theory and Its Applications, Bd. 1-2. Wiley, ISBN
9780471257097 (1957).

36

https://scipost.org/SciPostPhysCodeb.48
https://doi.org/10.21468/SciPostPhysCodeb.4
https://doi.org/10.21468/SciPostPhysCodeb.4-r0.3
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1103/PhysRevLett.125.156601
https://doi.org/10.21468/SciPostPhys.11.2.021
https://doi.org/https://doi.org/10.1016/j.cpc.2006.08.007
https://doi.org/https://doi.org/10.1016/j.cpc.2018.11.005
https://doi.org/10.1103/PhysRevLett.131.096702
https://doi.org/10.5281/zenodo.12798598

	Introduction
	Overview
	The problem
	The code

	The algorithm
	A concrete example
	General recipe
	The Offset
	The Stride

	Two important limits
	Two subsystems (N=2)
	L subsystems (N=L)

	Enumerative encoding

	DanceQ
	Core Modules and Usage
	Lookup tables
	Performance
	Matrix-free multiplication

	Conclusion
	Hilbert space dimension
	Pseudo code
	Sparse tensor storage
	Example code
	References

